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a b s t r a c t

The Nyquist theorem stipulates the largest sampling interval sufficient to avoid aliasing is the reciprocal
of the spectral bandwidth. When data are not sampled uniformly, the Nyquist theorem no longer applies,
and aliasing phenomena become more complex. For samples selected from an evenly spaced grid, signals
that are within the nominal bandwidth of the grid can give rise to aliases. The effective bandwidth affor-
ded by a set of nonuniformly sampled evolution times does not necessarily correspond to spacing of the
grid from which the samples are selected, but instead depends on the actual distribution of sample times.
For conventional uniform sampling there is no distinction between the grid spacing and the sampling
interval. For nonuniform sampling, an effective bandwidth can be inferred from the greatest common
divisor of the sample times, provided that none of the sample times are irrational. A simple way to
increase the effective bandwidth for a set of nonuniformly spaced samples is to randomly select them
from an oversampled grid. For a given grid spacing, ‘‘bursty” sampling helps to minimize aliasing arti-
facts. We show that some spectral artifacts arising from nonuniform sampling are aliases, and that
increasing the effective bandwidth shifts these artifacts out of the spectral window and improves spectral
quality. An advantage of nonuniform sampling is that some of the benefits of oversampling can be real-
ized without incurring experiment time or resolution penalties. We illustrate the improvements that can
be obtained with nonuniform sampling in the indirect dimension of a SOFAST–HMQC experiment.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The manifestation of spectral aliasing when a time-varying sig-
nal is sampled less frequently than stipulated by the Nyquist the-
orem [1] is straightforward: exact replicas of the signals appear
reflected about the limits of the effective bandwidth, a phenome-
non commonly referred to as spectral aliasing. The precise frequen-
cies of the aliases depend on the scheme used to discriminate
positive and negative frequencies (e.g., the type of quadrature
detection). When data is not sampled at uniformly spaced inter-
vals, however, the Nyquist theorem no longer holds. A fundamen-
tal question then arises: Can a bandwidth be associated with a set
of nonuniformly spaced sampling times? If not, what are the fac-
tors that determine whether a spectral component is aliased, and
how is aliasing manifested? In this work we demonstrate that in
the context of nonuniform sampling (NUS) in the time domain ali-
asing is not as simple as for uniform sampling, and examine the
factors that influence aliasing. For NUS, the spacing of the grid from
which samples are selected is not sufficient to define the band-
width: inadvertent choice of sample times can lead to undersam-
pling. Furthermore, completely random selection (i.e., off-grid) of
sample times does not afford infinite bandwidth. These results lead
ll rights reserved.
to a simple strategy for reducing artifacts in spectra computed
from NUS data. We illustrate the improvements that can be
achieved for a NUS SOFAST–HMQC experiment.

2. Spectral estimates for NUS data

With the recent explosion in approaches to fast or sparse data
collection in multidimensional NMR, it bears pointing out some
distinctions and similarities between different approaches used
to compute frequency spectra from NUS data. Methods such as
back projection reconstruction (BPR) [2] and G-matrix Fourier
transform (GFT) [3] exploit a very specific approach to selecting
NUS times, namely coupled evolution periods that result in sam-
pling along radial vectors in the time dimensions. Alternatives to
BPR and GFT include ‘‘nonuniform Fourier transform” (nuDFT)
[4], multidimensional decomposition (MDD) [5], maximum likeli-
hood (MLM) [6] and Bayesian methods [7], and maximum entropy
(MaxEnt) [8,9] and forward MaxEnt (FM) [10]. These latter meth-
ods are all capable of treating NUS data collected using essentially
arbitrary evolution times. Each has strengths and weaknesses; in
general, they employ a continuum of assumptions about the data.
For example, nuDFT implicitly assumes that times not sampled
have zero intensity, and so when samples are selected from a
regular grid, the fast Fourier transform (FFT) can be used to com-
pute the nuDFT by setting the data at times not sampled to zero.
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Although nuDFT is numerically efficient, the resulting spectral esti-
mate is a convolution of the point spread function (PSF) for the set
of sampled times with the spectrum of the sample [9]. The PSF is
obtained from the Fourier transform of a sampling function having
the value one for the times sampled and zero for times not sam-
pled. A consequence of this convolution is that sampling artifacts
are quite prominent in nuDFT spectra, and nuDFT spectra fre-
quently need post-processing to deconvolve the PSF in order to
be useful.

MLM and Bayesian methods both assume a model for the sig-
nals, usually treating the signal as a sum of exponentially decaying
sinusoids. As parametric methods of signal processing they can be
quite powerful when the assumption of exponential decay is valid
and the number of sinusoids is not underestimated. When either of
these conditions is violated, however, substantial bias can result.
Because all signal components including noise are modeled as
exponentially decaying sinusoids, these methods are prone to false
positives. MDD makes a less restrictive assumption that the multi-
dimensional spectrum (or signal) can be decomposed into a small
set of one-dimensional vectors; the multidimensional spectrum is
given by the vector outer product of the one-dimensional vectors.
MDD requires three- or higher-dimensional data, and thus is not
applicable to two-dimensional experiments. One aspect of MDD
that remains under-investigated is the response to noise: it is axi-
omatic that uncorrelated noise cannot be decomposed into a vector
product, and the manifestations of noise in MDD spectra and the
threshold at which MDD breaks down are not well understood.
The assumption underlying MDD is more general than that em-
ployed by MLM or Bayesian approaches, however, as it is applica-
ble in principle to arbitrary lineshapes, i.e., signals exhibiting
nonexponential decay.

MaxEnt is perhaps the most general of the methods suitable for
NUS data, as it assumes only that the noise is randomly distributed.
In the absence of empirical evidence MaxEnt biases the spectrum
toward zero; FM is related to more general MaxEnt by using the
maximum entropy principal to estimate values for samples not
collected in the NUS set, while enforcing an exact match between
the inverse DFT of the spectral estimate with the samples in the
NUS set. FM is thus equivalent to MaxEnt reconstruction in the lim-
it of infinite weight on the constraint enforcing agreement be-
tween the inverse DFT of the reconstructed spectrum and the
measured data; in essence, the entropy is used to interpolate the
data for times not sampled.
3. nuDFT: a misnomer

Although the discrete Fourier transform can be modified to
accommodate arbitrary sample times, when used with nonuni-
formly spaced samples it no longer corresponds to an expansion
in an orthonormal Fourier basis set and is thus not strictly speaking
a transform. The non-orthogonality of the basis functions over a set
of nonuniform sample times, even if they are selected from a uni-
form grid, results in interference between signal components and
is one perspective from which to view sampling artifacts. The use
of weights can in some circumstances improve the accuracy of
nuDFT, as is frequently employed in the realm of numerical quad-
rature on an irregular mesh. The appropriate weights correspond
to the Jacobian (ratio of partial derivatives) used when changing
variables under an integral, as employed by Coggins and Zhou in
their demonstration of the equivalence between back projection
and radial Fourier Transformation [11]. In the discrete case, or
when the sampling scheme lacks an analytic description, the
appropriate weights are given by the Voronoi area or volume (for
2D or 3D nonuniform sampling, respectively) around each sample
time, as shown by Pannetier et al. [12] Despite the limitations of
nuDFT, it yields a linear spectral estimate and places useful bounds
on the sampling artifacts that nonlinear methods help to reduce.
Here we use unweighted nuDFT to explore aliasing artifacts due
to NUS.
4. Aliasing with NUS: imperfect aliasing

With uniform sampling, signal components with frequencies
higher than the reciprocal of the sampling interval are ‘‘perfectly”
aliased, that is they appear at a lower frequency but the same
amplitude as in a non-aliased spectrum (i.e., one obtained with a
higher sampling rate, Fig. 1) [1]. When the same signal is sampled
nonuniformly by selecting a subset of the sample values, artifacts
appear at the same locations as before, but with different ampli-
tudes. The alias and the original peak are both broadened, in the
nuDFT spectrum, by an amount corresponding to the width of
the zero-frequency component of the PSF. The magnitude of the
artifacts depends on the frequencies of the signal components
and the distribution of sample times in the subset. We refer to ali-
ases resulting from signals with frequencies that exceed the reci-
procal of the grid spacing as extra-band aliases. Those arising
from signals that do not exceed the reciprocal of the grid spacing
we refer to as intra-band aliases; these aliases are not present in
spectra of uniformly sampled data.

Fig. 2 depicts example spectra for a noiseless, synthetic signal
sampled nonuniformly and computed using nuDFT. We conducted
a more systematic computer experiment in which 10000 randomly
generated NUS schedules were used to sample 20 different syn-
thetic data sets, each containing a single randomly selected fre-
quency component. Fig. 3 shows the amplitudes of the intra-
band aliases (relative to the non-aliased peak) averaged over the
20 spectra, as a function of the average sampling rate, defined as
the average of the reciprocal of the time interval between succes-
sive samples for each of the 10000 randomly generated nonuni-
form sampling schedules. The average sampling rate is reported
as a unitless fraction of the rate of sampling on the uniform grid;
a schedule that utilizes alternate points on the grid would have
an average sampling rate of 0.5, while uniform sampling of the first
50% of the points on the grid would have an average rate of 1.0.
Each sampling schedule consists of 32 sample times selected from
a uniform 64-element grid. The 10 sampling schedules that on
average lead to the smallest intra-band aliases (values near 0.01
in panel A) and the 10 that lead to the largest intra-band aliases
(near the top of the distribution in panel A) are depicted in panels
B and C, respectively. The best schedules (panel B) qualitatively ap-
pear to be more ‘‘bursty” than the worst schedules. Although burst
sampling is routinely used in frequency estimation [13] and ‘‘burs-
tiness” is an important characteristic of network traffic, there is no
established metric for quantifying ‘‘burstiness”. We plan to explore
this issue further.

Comparison of a nuDFT spectrum with a spectrum computed
using a method that deconvolves sampling artifacts (such as Max-
Ent) reveals another distinction between intra-band aliases and
extra-band aliases. Fig. 4 compares spectra obtained from a syn-
thetic signal containing two signal components, sampled from a
grid corresponding to a 10,000 Hz bandwidth. One component
has a frequency of 1500 Hz (as in Fig. 2) and the other has a fre-
quency of 8000 Hz, outside the nominal bandwidth (±5000 Hz) of
the grid. Panel A depicts the DFT of the uniformly sampled data,
with the extra-band alias peak indicated by an asterisk. Panels B
and C depict the nuDFT and MaxEnt reconstructions (computed
using the Rowland NMR Toolkit [14]), respectively, using the non-
uniform sampling schedule depicted in panel D. Intra-band aliases
appear in B and C are indicated by diamonds. In the MaxEnt spec-
trum the intra-band aliases are diminished, but the extra-band



Fig. 1. Examples of aliasing using uniform sampling. Each panel depicts a uniform sampling scheme above the DFT spectrum for a single synthetic sinusoid. (A) Uniform
sampling at the Nyquist rate. (B) Uniform sampling at one-half the Nyquist rate. (C) Uniform sampling at one-quarter the Nyquist rate. (D, E and F) Depict the sampled times
for A, B and C, respectively.
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alias remains unaffected. In the MaxEnt spectrum of this noiseless
synthetic data, the parameter ‘‘aim” that corresponds to the exper-
imental uncertainty is set to an arbitrary value (aim is the root-
mean-square difference between the measured data and the
‘‘mock data” obtained by inverse FT of the MaxEnt spectrum; it
normally is set to a value comparable but somewhat larger than
the estimated noise level. Here it need only be set to a value smal-
ler than the total power in the noiseless signal). In principle it
could be set to an extremely small value that would lead to com-
plete deconvolution of the sampling artifacts (including the NUS
alias peak), but such perfect deconvolution is never achievable
for real data containing noise.

5. On vs. off-grid sampling

If NUS is not restricted to a subset of samples from the Nyquist
grid (the grid with times spaced at the Nyquist interval), it is not
Fig. 2. Imperfect aliasing with nonuniform sampling. The panels on the left (A and B) d
synthetic signal as Fig. 1, using nonuniform sampling from the Nyquist grid as depicted
using deliberate undersampling by a factor of two, but with a height slightly less than t
number of samples in the NUS set spaced at the Nyquist interval.
obvious whether or where to expect aliases. As pointed out by
Bretthorst [15,16], any set of arbitrary sample times can be placed
on a uniform grid so long as the sample times have finite precision
(i.e., the times are not irrational). The grid is specified by the least
significant digit in the sample times (determined by the precision
of the spectrometer timing circuitry). The least significant digit is
actually a lower bound on the grid spacing, as there may be a com-
mon divisor that is larger. The greatest common divisor (GCD)
specifies the grid with the largest possible spacing, containing
the fewest elements sufficient to accommodate the sample set.
The GCD can be computed using a number of different approaches,
for example by finding common factors for successive pairs of evo-
lution times or by finding the prime factors for all the evolution
times (when converted to integers by shifting the decimal point)
and counting the common factors. The reciprocal of the GCD spec-
ifies a nominal bandwidth for an off-grid sample set, and is finite.
The suggestion that random sampling corresponds to infinite
epict the nuDFT (DFT in which samples not measured are set to zero) for the same
in the panels on the right (C and D). (A) An alias appears at the frequency expected
he true (unaliased) peak. (B) The alias is greatly diminished, a result of the greater



Fig. 3. Results for random sampling schemes. 10,000 schemes were generated by randomly selecting 32 sample times from a uniform grid of 64 samples. (A) Ratio between
the alias peak height and the real peak height, averaged over 20 different synthetic data sets, each containing a single randomly selected frequency component, plotted
against the average sampling rate in fractional units of the rate corresponding to the uniform grid. The ten best (smallest alias/real ratio) and ten worst (largest alias/real
ratio) are depicted (B and C), respectively. The best schedules (B) tend to be ‘‘bursty”.
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bandwidth [17] is only correct if the sample times are specified
with infinite precision and the times are relatively prime.

6. Oversampling and randomness to decrease GCD

One way to ensure that a set of NUS times have the smallest fea-
sible GCD is to ensure that they are relatively prime, that is they
have no common factor other than ‘‘1” in the least significant digit.
This can be accomplished by ensuring that the times themselves
(scaled to integer values) are prime numbers. A more practical
method is to select NUS subsets from an oversampled grid, with
a spacing given by an integer fraction of the Nyquist interval for
the desired bandwidth. Timing circuits on modern commercial
NMR spectrometers typically have nominal timing accuracy of 25
nsec or better, corresponding to a Nyquist grid with a 40-MHz
bandwidth. This suggests that oversampling of up to 1000-fold
should be feasible for the indirect dimensions of typical biomolec-
ular NMR experiments. While selecting samples from an
Fig. 4. MaxEnt reconstruction diminishes sampling-related (intra-band) aliases. Top s
frequency components, one within the Nyquist bandwidth (appear on the right of the
nuDFT of NUS data for the same signal, sampled as depicted below the spectrum. Bott
aliases are diminished. Asterisks denote extra-band aliases. Diamonds denote intra-ban
oversampled grid does not ensure that the GCD or smallest sam-
pling interval will match the grid spacing, by employing some de-
gree of randomness or some other irregular scheme for selecting
the NUS subset, there is a reasonably high likelihood of obtaining
a set with a GCD equal to the grid spacing. For very small subsets
of a grid, however, substantial aliasing of peaks within the nominal
bandwidth of the grid is unavoidable.

7. Results and discussion: application to SOFAST–HMQC

To illustrate the advantages of decreasing the GCD for a NUS set,
we applied NUS to a SOFAST–HMQC experiment [18]. SOFAST
experiments exploit the concept of the Ernst angle [19] to optimize
sensitivity for a given relaxation delay between FIDs, and are par-
ticularly useful in applications to labile systems (for example mea-
suring H-exchange rates). NUS enables a reduction in the number
of samples required to collect data at long evolution times neces-
sary for high resolution, thus enabling additional time savings
pectrum: DFT spectrum of a uniformly sampled synthetic signal containing two
spectrum) and one outside the Nyquist bandwidth (on the left). Middle spectrum:
om spectrum: MaxEnt reconstruction of the same NUS data; only the NUS-related
d aliases.



Fig. 5. Conventional (DFT) SOFAST–HMQC spectra for ubiquitin, uniformly sampled
in t1 at rates corresponding to 1600 Hz (A) and 6400 Hz (B). Signals indicated by the
arrow are from Arg residues that resonate outside the 1600 Hz bandwidth.
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and extending the range of rates accessible by SOFAST experi-
ments. MaxEnt reconstruction is an apt choice for computing the
spectrum, because the experiment is two-dimensional, and
approaches such as MWD are thus not applicable.

For reference, conventional DFT SOFAST–HMQC spectra for
ubiquitin computed from uniformly sampled data are shown in
Fig. 5. Panel A shows the spectrum computed from data sampled
at a rate corresponding to a 1600 Hz bandwidth; panel B shows
the spectrum computed from data sampled at a rate 4 times high-
er. The arrows in both panels illustrate the position of side chain
Arg peaks that resonate near 71 ppm (15N) that are aliased into
the spectrum in panel A. Fig. 6 illustrates MaxEnt spectra of NUS
SOFAST–HMQC data with NUS applied along the indirect time
dimension. Panel A employed 77 samples out of a 256-point
1600 Hz bandwidth grid, while Panels B and C employed 77 sam-
ples out of a 1024-point (4� oversampled) grid and a 4096-point
(8� oversampled) grid, respectively. The top row depicts one-
dimensional cross-sections through the spectra at the frequency
indicated by the red line in Panels A–C. The sampled times are very
similar for all three experiments, selected randomly from a decay-
ing exponential distribution corresponding to a 12.5 Hz line width
and each having approximately the same maximum evolution
time. Each experiment results in a better than 3-fold reduction in
experiment time compared to uniform sampling. The aliased Arg
peaks in panel A (near 7 ppm in the 1H trace) are clearly eliminated
in panels B and C. Noise levels in the spectra are improved by
selecting the NUS from oversampled grid, a result of shifting some
Fig. 6. MaxEnt NUS SOFAST–HMQC spectra for ubiquitin, using t1 samples selected using
77 samples from a 256-point 1� (1600 Hz) grid. Middle: 77 samples from a 1024-point
dimensional cross-sections taken at the position of the horizontal line near 116 ppm (15
sampling artifacts out of the 10000-Hz spectral window. This effect
is explained by the PSFs for the NUS sets, shown in Fig. 7. Some of
the sampling noise apparent with sampling on the Nyquist (1�)
grid results from aliasing, so oversampling shifts this noise out of
the spectral region of interest. The central or zero-frequency com-
ponent of the PSF becomes broader as the grid spacing is de-
creased. No attempt to deconvolve additional signal decay was
employed in the MaxEnt computations shown in Fig. 6, and in prin-
ciple the broadening effects of NUS on an oversampled grid could
be reduced by deconvolution. The GCD for the NUS sets for the
three sampling schemes are 1/1600, 1/6400, and 1/12800 s, each
matching the spacing of the underlying grids.

In addition to reducing sampling noise, comparison of Figs. 5
and 6 illustrates that NUS from an oversampled grid coupled with
MaxEnt reconstruction (or other methods capable of processing
NUS data) affords the anti-aliasing benefits of oversampling with-
out incurring the multiplicative time cost that would be associated
with uniform oversampling and conventional (DFT) processing.
Improvements in sensitivity that can be obtained through uniform
oversampling, provided that the majority of additional samples
collected as a result of oversampling correspond to evolution times
less than 1.5T2� [20], will in general not be obtained by NUS over-
sampling, however.
8. Concluding remarks

The influence of the NUS strategy on aliasing is another illustra-
tion that the most important determinant of the quality of NUS
spectral quality is the choice of sampled times. With the exception
of nuDFT, all existing methods for spectral estimation from NUS
data attempt to deconvolve the PSF from the spectrum to some de-
gree. The frequency dependence of aliasing when NUS is employed
is more complex than that for uniform sampling, and the Nyquist
theorem no longer applies. The GCD is the determinant of aliasing
effects with NUS. The use of an oversampled grid and random sam-
pling to select NUS sets is a simple method for decreasing the GCD
and thus shifting aliased noise—both sampling and experimental—
out of the spectral region of interest. An advantage of the GCD as a
metric for the effective bandwidth is that it is applicable to on or
off-grid sampling schemes, provided that the off-grid times are
specified with finite precision. However, the complexity of aliasing
when NUS is employed necessitates additional metrics, such as the
fraction of samples separated by the GCD. The decrease in
a decaying exponential density function corresponding to a 12.5 Hz linewidth. Left:
4� (6400 Hz) grid. Right: 77 samples from a 2048-point 8� (12800 Hz) grid. One-
N) are plotted above each contour plot.



Fig. 7. PSFs for the three NUS schedules used in Fig. 6, corresponding to Nyquist rate, or 1� (top), 4� (middle), and 8� (bottom) oversampling.
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sampling artifacts afforded by decreasing the GCD or selecting
samples from an oversampled grid effectively increases the effec-
tive dynamic range of NUS. Oversampling has previously been
shown to improve dynamic range for uniformly sampled data
[21,22], and the reduction of sampling artifacts in the spectral re-
gion of interest provides additional incentive for employing over-
sampling in the design of NUS experiments. The results
demonstrated here for NUS applied to one indirect dimension
should be achievable in all indirect dimensions of multidimen-
sional experiments, and in principle the benefits (e.g., noise reduc-
tion) should be multiplicative. We are actively exploring the
achievable gains for two and three indirect dimensions.

For the practicing NMR spectroscopist, the fundamental ques-
tion about NUS is what is the optimal sampling scheme? While
we have learned a great deal about how to improve sensitivity
and resolution and minimize artifacts, we still do not know how
to determine if a sampling scheme is optimal. One reason defining
an optimal schedule is so difficult is that ‘‘optimality” depends on
the frequency distribution of the signals. Another is that there is no
consensus on metrics for sensitivity or resolution. Critical compar-
ison of different approaches—either for NUS schemes or spectral
reconstruction methods for NUS data—is hampered by this lack
of consensus, and the lack of standard test data. Recent initiatives
toward collaborative efforts to address these stumbling blocks,
such as a workshop at the 49th Experimental NMR Conference,
should begin to bear fruit in the near future.
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